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Exact calculations are presented for the survival fraction and other capture- 
related observables in a problem involving migration on a one-dimensional 
lattice containing perfectly absorbing traps whose placement within the crystal is 
determined by explicit interactions among the trap molecules. These interac- 
tions, which are treated exactly in a lattice-gas model, may be attractive, in 
which case they lead to trap cluster formation and a reduction of the trapping 
efficiency, or they may be repulsive thus leading to increased separation of the 
trap molecules and an enhancement of the trapping process. 

KEY WORDS: Master equation; trapping; Ising models; lattice gas; coop- 
erative interactions. 

1. INTRODUCTION 

There has been considerable work done in recent years aimed at describing 
the trapping of particles which move on a crystalline lattice, (I-12) as in, e.g., 
experiments involving sensitized luminescence. In all this work it is gener- 
ally assumed that the placement of traps in the crystal is random. We have 
recently begun to study the consequences of possible interactions among 
the traps, which would tend to affect their placement in the crystal and 
introduce correlations among the trap positions. We have introduced such 
interactions in a phenomenological manner, r and have also analyzed 
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them exactly r 14) for a one-dimensional lattice-gas model. In these analyses 
the transport and capture processes are treated in a way which, although 
approximate, 3 is valid for arbitrary dimensionality, degree of transport 
coherence, and range of motion. It  is, furthermore, capable of treating traps 
which may not be perfect absorbers. In the present paper, however, we 
restrict ourselves to perfectly absorbing traps and one-dimensional incoher- 
ent motion. As with randomly placed traps, a simplification occurs when 
this restriction is imposed, which makes it possible to obtain an exac t  
solution to the dynamical problem. O~'12'~5~ We are able, therefore, to use 
the treatment of t rap- t rap  interactions presented in Ref. 14, hereafter 
referred to as I, to study exactly the problem of particles migrating on a 
one-dimensional lattice in the presence of a nonrandom distribution of 
perfectly absorbing, deep traps. 4 The present paper  thus complements the 
analyses presented in Refs. 13 and 14 and helps provide insight into the 
manner  in which phenomena such as trap cluster formation can affect the 
proper interpretation of experimental results. 

2. MODEL AND GENERAL SOLUTION 

We assume that the transport particles in our model obey the following 
evolution equation for the probability Pro(t) that a particle occupies the 
mth site in the crystal at time t: 

dP , , ( t )  _ 2 F P m ( t  ) + F [ P m + t ( t  ) + P m _ l ( t ) ]  -- CmPm(t) (2.1) 
dt 

Here, F is the hopping rate from site m to its neighbors and the quantities 
c m are random variables governing the decay of probability from the sites m 
due to the presence of traps. Since we treat the traps as perfect absorbers, 
the c m take on the value zero when m is a host site and are infinite when it 
is a trap. In the random case these occur with weights (1 - p) and p, the 
host and trap concentrations, respectively. This result stems from the fact 
that the probability for a given site being occupied by a trap molecule is 
independent of the positions of the other traps. When interactions exist 
between trap molecules, however, the result is not valid. It is this case that 
we treat in this paper  and in I. 

The feature of the problem of motion and trapping on a one- 
dimensional lattice with perfectly absorbing traps which makes possible an 

3 Although approximate for general trap interactions, the theory developed in Ref. 14 is exact 
for periodically placed traps. 

4 We use the term "deep" to refer to the absence of detrapping rather than to the infinite rate 
associated with the trapping process itself (for which we reserve the term "perfectly 
absorbing"). This is in contrast to the usage of, e.g., Ref. 1 I. 
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exact solution (~1'12'I5) is that the traps divide the host sites into isolated 
clusters. Any particle starting within such a host cluster is cut off from the 
rest of the crystal. The survival fractions of host particles in the crystal 
may, therefore, be simply expressed as an average over host clusters, viz. 

n(t) = ~ wNnN(t ) (2.2) 
N = I  

in which w N is the probability that an arbitrary host site is part of a host 
cluster of size N and the quantity nN(t ) is the survival fraction for one such 
cluster with the initial condition that all sites of the cluster are populated 
equally with probability 1/N.  By a host cluster of size N we mean a group 
of N adjacent host sites with a trap at each end. 

With perfectly absorbing traps, a cluster of N host sites with a trap at 
each end is dynamically equivalent to a ring containing one trap site and N 
host sites. The latter problem may be solved (4) straightforwardly through, 
e.g., the defect technique of Montroll ~16) resulting in 

1 1  - - - -  (2.3) fiN(e) = -~ NCt~(oN+ ,) 

in which tildes denote Laplace transforms with Laplace variable c, and the 
quantity t~(oN)(t) is, for a ring of N host sites containing no traps, the 
probability that a particle located initially at any site will be there at a time 
t later. Of the several known forms of this quantity we use the compact 
one,(5,13,17) 

tanh(~'/2) 
C~<0N)(e)- tanh(N~' /2)  (2.4) 

in which cosh ~' = 1 + e/2F. 
It is clear from (2.2) that, with nN(t ) given by (2.3) and (2.4), we 

require only the weights w~+ in order to obtain an explicit solution for the 
survival fraction. The evaluation of these quantities requires a knowledge of 
the form of the trap-trap interaction. The description of this interaction in 
terms of a lattice-gas model and the resulting calculation of the w u 
comprise the next section. 

3. CLUSTER PROBABILITIES IN THE LATTICE-GAS MODEL 

When no interactions exist among the trap molecules, w N may be 
expressed as the product of the independent probabilities for the interior 
sites being occupied by host molecules, the probabilities for the two end 
sites being occupied by traps, and the number of distinct host clusters of 
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size N in which a specified host site may be located, i.e., 

w N =- NO2(1 - O) N- '  (3.1) 

With (3.1), (2.3), and (2.4) substituted in (2.2) the result for the random 
distribution of traps is obtained, viz. 

F~(s = ---1 { l -  E N=' ~ P 2 ( I ' o ) N - I [  tanh[(N 
+ 1)~'/2] - tanh(( ' /2)  

t ~ ~  ] )  

(3.2) 
We show in Appendix A how this expression is equivalent to the result 
obtained earlier by Movaghar et al. (ll) in their analysis of randomly placed 
traps. 

In the presence of interactions among the trap molecules, (3.1) no 
longer gives the correct form for the cluster probabilities. These quantities 
must, therefore, be calculated from our model of trap-trap interactions. 
The approach that we adopt is detailed in I. It consists of using a lattice-gas 
model in which there is an interaction energy associated with every pair of 
trap molecules in the system, and of utilizing the well-known relationship 
between lattice gases and the Ising model. The interaction energy is infinite 
if two trap molecules occupy the same site, takes on the value - A  if they 
are nearest neighbors, and is zero otherwise. Clearly, positive values of A 
correspond to attractive interactions and negative values correspond to 
repulsive ones. To obtain expressions for the trapping observables it is 
necessary to calculate n-point correlation functions in the trap system. 
While two-point correlations suffice in the treatment of I, the present 
analysis requires certain higher-order correlation functions. 

In the one-dimensional lattice gas, a given configuration of trap and 
host sites can be represented by the set (ol ,o2,o 3 . . . .  }, where the % are 
Ising model spin variables taking on the value 1 if site m is a trap site and 
- 1 if it is a host, The probability for a particular configuration to occur is 
given by Z-lexp[-BU(Ol, aV...)] in which 3 =  1/kBT,  k B is Boltz- 
mann's constant, T is the appropriate temperature, U(oj, a 2 . . . .  ) is the 
energy associated with the configuration as determined by the interaction 
energy described earlier, and Z is the partition function for the system, 

Z --- ~2 exp[ - f l U ( O l , 0 2 , . . .  )] (3.3) 
(o1 

If we let gN denote the probability that N + 2 adjacent sites in the crystal 
make up a host cluster of size N, then 

/ /Ol -k  1 Io2--11 --11 ION+l--1 [ -[-1 
gN 

(3.4) 
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The angular brackets denote expectation values taken over the density 
matrix, i.e., if A is any function of the o m then 

( A )  =-- Z - '  ~ ] A ( a I ,  a2, . . . ) e x p [ - f l U ( o , , a  2 . . . .  )] (3.5) 
{o} 

In Appendix B it is shown that the expectation value (3.4) is given by 

gN = (1 --p)p2(1 -- X)2[1 --13(1 -- X)] u - '  (3.6) 

The quantity x has been introduced in I as 

[1 - 4,o(1 - p) (1  - e -'Sa) ] ' / 2  -- 1 
x = (3.7) 

Lrl-4p(1 p)(1-e-'SA)] '/2+1 
From the definitions of w~ and gN it is clear that they are related through 
w,, = (1 - p ) - I N g  N since (1 - p )  is the probability that an arbitrary site is 
occupied by a host molecule. We have, therefore, for the weights appearing 
in (2.2), 

w u ~ -  Up2(1 - x)2[1 - p(1 - -  x ) ]  u - 1  (3.8) 

4. R E S U L T S  A N D  D I S C U S S I O N  

Equation (3.8) is remarkable in its simplicity. Comparison with (3.1) 
shows that the cluster probabilities in the presence of interactions among 
trap molecules may be obtained from those which apply when no interac- 
tions are present, simply by replacing the trap concentration p by an 
effective concentration Pe = p(1 - x). Moreover, this clearly holds for all the 
relevant trapping observables as well, since we see from (2.2) that the p 
dependence of the survival fraction is contained entirely in the quantities 
w u.  After substitution into (2.2) we have, for the survival fraction in the 
presence of trap interactions, 

f f ( e ) = l { 1 - ~ p ~ ( 1 - O e ) U - i [ t a n h [ ( N + l ) ~ ' / 2 ] - t a n h ( ~ ' / 2 ) ] } c  N = I  t ~ ~  

(4.1) 

The effective concentration Pe is plotted in Fig. 1 as a function of the 
actual trap concentration for different values of the trap interaction param- 
eter E ~ exp(fib). Note that the effective concentration is increased when 
the trap interaction is repulsive (E < 1) and is decreased when the interac- 
tion is attractive (E > 1). 

It should be clear from this discussion that the f o r m  of the decay of 
the survival fraction is unchanged in the presence of trap interactions, but 
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Fig. 1. 
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Effective trap concentration Pe as a function of the actual trap concentration p with 
values of the trap interaction parameter E as indicated. 

that a rescaling of the concentration occurs. Thus the result n ( t ) ~  
exp [ - ( t /To )  1/3] of Movaghar et al., (ll) where T 0 is an appropriate charac- 
teristic time, continues to hold, but with a rescaled value of T 0. The 
rescaling enhances the trapping process when repulsive interactions are 
present (Pc is increased), and inhibits the trapping process when attractive 
interactions are present (Pe is decreased). This is qualitatively as one would 
expect since attractive interactions would lead to an increase in the average 
size of trap clusters. For perfectly absorbing traps no interior members of a 
trap cluster are ever involved in the trapping process. Hence the effective 
number of traps actually capable of trapping goes down as the average trap 
cluster size increases. It is also clear, therefore, why repulsive interactions 
increase the trapping efficiency: they lead to a decrease in the average size 
of trap clusters and an increase in the fraction of trap molecules which are 
not interior members of trap clusters. This change in the trapping efficiency 
with changing interaction strength has also been discussed in I. 

In Figs. 2 and 3 this behavior is demonstrated in a numerical inver- 
sion ~18) of (4.1) for two different trap concentrations. In Fig. 2 p = l 0  - 2  

and in Fig. 3 P---0.5. The different curves in each figure correspond to 
different values of the trap molecule interaction parameter E, the curves 
with E = 1 describing the case of no interactions studied previously. (~'12'j5~ 
For the trap concentration P = 0.5 we note that as the interaction energy 
increases to positive infinity (the limit of very strong repulsive interactions) 
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Fig. 2. Survival fraction n(t) as a function of the dimensionless time Ft, with trap concentra- 
tion O = 1 0 - 2  and values of the trap interaction parameter E as indicated. Note that at this 
concentration the curves corresponding to values of E ~< 1 (repulsive interactions) are indistin- 
guishable. 
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Fig. 3. Survival fraction of particles n(t) as a function of the dimensionless time Ft, with trap 
concentration O = 0.5 and with values of the trap interaction parameter E as indicated. The 
dashed curve is exponential and corresponds to the limiting value E = 0. 
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the traps must occupy alternate positions within the lattice so as to avoid 
being nearest neighbors. When this happens the largest host cluster is of 
size one and the subsequent decay of the survival fraction is given by the 
exponential n(t) = exp(-2Ft),  with each (isolated) host site decaying to the 
two traps which are its neighbors. The dashed curve in Fig. 3 represents this 
exponential decay and, indeed, one sees that as E approaches zero, the 
curves describing the host decay do approach the exponential limit. 

In exciton trapping experiments, e.g., sensitized luminescence, the 
survival fraction is monitored through the detection of photons emitted by 
the hosts or the traps as they decay radiatively to the ground state. 
Radiative decay has not been included in (2.1) for reasons of simplicity and 
also to make the analysis relevant to particles other than Frenkel excitons. 
However, it has been shown elsewhere (4~ that such effects may be account- 
ed for by adding the term Pm(t)/'r to the left-hand side of (2.1), by 
multiplying (2.2) by exp(- t / , r ) ,  or by replacing e with r + 1/~- in the 
corresponding transformed expressions. When this is done, the host and 
trap quantum yields q)u and 0G, defined to be that fraction of the initial 
excitation which decays radiatively from host and traps sites, respectively, 
can be obtained without inversion from (4.1) through the relation 

q)~v = (  ~dtn(t) e-t/~- . . . .  1 r T( 1 ) (4.2) 
dO 7 T T 

and by conservation of probability through ~G = 1 - ~H. Thus, for exam- 
ple, we have the following explicit expression for 0G: 

(1- p~)N-ltanh[(N + 1)~/2] 

N ~=j tanh((/2) (4.3) 

in which cosh( = 1 + 1/2F'r. In Fig. 4 we present plots of q'G as a function 
of P with the same values of the parameter E as in Fig. 1. 

Although the analysis of I has a greater range of applicability than the 
present one because of its ability to treat arbitrary degree of coherence and 
range in the motion and arbitrary capture rates, it involves an approxima- 
tion procedure. On the other hand, the theory presented here, although 
restricted to nearest-neighbor incoherent motion and to infinite capture 
rates c, involves no approximations. It is therefore of interest to test the 
validity of the limiting form of I which corresponds to the present analysis. 
To this end we present Fig. 5, Which shows a comparison of the guest yield 
0c as predicted by I and by the present treatment. The dashed curves in 
Fig. 5 correspond to the limit c ~ oe of Eqs. (1.6) and (3.22) of I. The solid 
curves correspond to Eq. (4.3) of the present paper. The values of the 
interaction parameter E are as indicated. We observe that the appropriate 
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Fig. 4. Trap yield ~G plotted against trap concentration with values of the trap interaction 
parameter  E as indicated. We have taken ~r = 102/F. Note that the curves for values of 
E < 0.1 are indistinguishable for this choice of ~-. 
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Fig. 5. Trap yield (~G vs. trap concentration 9 as predicted by the theory of I (dashed curves) 
and the theory of this paper (solid curves). Values of E are as indicated and  ~" = 102/F. 
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limit of the theory contained in I is in reasonable quantitative and excellent 
qualitative agreement with the exact results presented here. 

The purpose of this paper has been to present the  result of exact 
calculations which include the effects of trap-trap interactions on the 
observables related to the migration and trapping of excitations on a 
one-dimensional lattice. We have shown how, for a simple lattice-gas model 
of these interactions, the total intermolecular interaction may be accounted 
for exactly by rescaling the trap concentration. It is hoped that calculations 
of the sort presented here and in I will be of use in determining the 
magnitude of effects such as trap cluster formation on capture phenomena. 

APPENDIX A 

In this appendix we wish to demonstrate the equivalence of the form 
given in (3.2) for the survival fraction with that obtained by other 
authors. (~1) To accomplish this we first introduce the quantity h ( e ) ~  
exp(-~ ' )  and reexpress the hyperbolic functions of (2.4) in terms of sums of 
powers of h (e). We obtain after some rearrangement 

(1 - ~ o U - ~ h ( h  ~ - l )  

Now, expanding the factor of (I + h N+ i) which appears in the denomina- 
tor of the summation in (AI) as a geometric series we obtain 

o T ( Q - l =  ~ ~ 2 p Z h ' + ' ( - 1 ) '  
k = 0 N = l  1 - h  ( h N ( k + l ) - - h U k ) ( 1 - - p )  N - ,  (a2) 

The sum over N may now easily be performed yielding 

2p2h2k+~(-- 1) ~ 

El (i p) h k+l ] 
k = O  - -  - -  o)n JLl ~' 

The summand may be reexpressed, however, by making use of the identity 

2h2k+ l 

[1 - (1 - p)hk][1 - (1 - p)h k+']  

[ 1' = h k+l _ h g 

l - (1 - p)h k+l 1 - ( i  - p)h k 

- hEk+2 -- hEk (A4) 

[ 1 - -  (1 - -  p )hk+ ' ]  2 [1 -- (1-- p)hk] 2 

Notice that the last two terms on the right-hand side (A4) become identical 
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when k is replaced by k - 1 in the first of them. Because of the oscillating 
factor of ( - 1 )  k which multiplies them, these two terms will cancel each 
other when substituted into the sum (A3). The only contribution will come 
from the unpaired k = 0 term, which has the value - 1 .  Combining this 
with the first term on the right-hand side of (A4) we obtain after some 
straightforward algebra 

p2h2k(1 - h)2 (A5) 
t7(e) 

- -  e [ l  - ( 1  - o ) h k ] 2 [ l  - (1 - o)h ~+']2 k=O 

which is identical to equation (6) of Ref. I t. 

APPENDIX B: EVALUATION OF CLUSTER PROBABILITIES 

The one-dimensional lattice gas is equivalent to a one-dimensional 
Ising model (19) with configuration energy U(Ol, a 2 . . . .  ) given by 

n n 

U(a,.a 2 . . . .  ) = - J  ~_. oioi+ , - B E o i (B1) 
i=1 i=1 

where o..+1 = 01. The quantity J is related to A by the relation 4J  = A and 
for a large system (n --~ oe) the magnetization M is (2~ 

M =  sinh flB[sinh2flB + e - 4 " ]  '/2 (B2) 

The equivalence M = 2 0 - 1 gives B as a function of p and A, the variables 
of the lattice gas model. For the Ising model, the quantities gu can be 
written 

gN= T @ T r { p n - N - ~ ( ~  o0)p(O10)[P(  e-21sBO 0t1  00t} 
(B3) 

where Tr indicates a trace and the matrix P is given by 

e - B J  
P = \( eB(s+~)e - ~  efl(j_B)) (B4) 

Equation (B3) can be evaluated exactly in the limit n ~ m yielding 

gN =~(1  + M2)(1 - M)(1 - x)2[l - (1/2)(1 - x)(1 + M)] N-' (B5) 

in which 

[ l  - ( 1  - M 2 ) ( 1  - e 4r  1 
X = (B6) 

[ 1 - ( 1 -  M2)(1 ," e4fld)]l/2 --b 1 
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Subs t i tu t ing  A for  4 J ,  a n d  2 0 - 1 for  M in (B5) a n d  (B6) gives  (3.6) a n d  

(3.7). 
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